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Abstract 
 
 

This research endeavors to evaluate and characterize the performance of CubeSat 

specific commercial-off-the-shelf (COTS) Attitude Determination and Control Systems 

(ADACS) for Mission suitability.   

To ensure COTS components are capable of meeting CubeSat mission 

requirements, deliberate performance testing of critical CubeSat subsystems in flight-like 

conditions is essential.  This effort focuses on testing the MAI-401 ADACS subsystem as 

configured to support the Grissom-1 CubeSat mission, as mounted to an air bearing, 

residing within a 3-axis Helmholtz Cage, and subjected to a simulated magnetic 

environment of various orbital parameters.  A literature review of spacecraft components, 

prior missions, operations, environmental simulators, and attitude determination and 

control algorithms informs the tests and assessments described herein.  A test plan 

developed as part of this research exercises and characterizes the MAI-401 ADACS unit 

for the Grissom-1 mission and serves as a comparative framework for testing additional 

ADACS offerings such as the BCT XACT ADACS unit.  Results include a baseline 

characterization of COTS ADACS, discussion of currently available ADACS and 

suitable Mission types, and suggestions for enhanced testing. 
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CUBESAT ATTITUDE DETERMINATION AND CONTROL SYSTEM (ADACS) 
CHARACTERIZATION AND TESTING FOR RENDEZVOUS AND PROXIMITY 

OPERATIONS (RPO) 
 

I.  Introduction 
 

Background 

Orbital spacecraft have garnered much global interest since before the first purpose-built 

satellite to remain on orbit for an extended period, Sputnik I, was launched in 1957.  

Since 1957 the desire to field orbital craft for both manned and unmanned operations 

have continually increased.  From the early years filled with dreams of proving reliable 

orbital flight to the current reliance on space for logistics, navigation, and 

communications, the Industry as had to rely on continual advances in spacecraft 

componentry to support the expanding Mission needs.  Intertwined with the 

miniaturization of electronic components, the past two decades have yielded a trend of 

increasing launches of smaller spacecraft such as those based upon the CubeSat standard.  

The popularity of the CubeSat standard is accompanied by the influx of commercial 

CubeSat component suppliers which drive costs to programs down but requiring 

additional effort to understand the performance and applicability of the new components.  

Of the new components, the need for reliable and accurate Attitude Determination and 

Control Systems (ADACS) to control spacecraft pointing has become a priority target for 

assessment. 
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CubeSat 

CubeSats come in a variety of configurations but the standardized test chassis chosen for 

this research is commonly referred to as a “6U”.  As the name implies, the chassis’ 

volume can be broken down to six 10cm x 10cm x 10cm units.  The chassis is outfitted 

with most of the components and subsystems required to provide a flight spacecraft, 

though some are engineering units not qualified for space flight, and others are removed 

for test setup logistics.  Of the subsystems required to support testing of the ADACS are 

the Electrical Power System (EPS) providing power, the Command & Data Handling 

System (C&DH) providing the flight software, and the Telemetry, Tracking & Control 

System (TT&C) through which the communications from the ground software are passed.  

In addition, a laboratory workstation is required as both the hub of data accumulation for 

the testbed as well as acting as the ground station for commanding the spacecraft.   

 

ADACS 

Discussion of ADACS is primarily split into the two separate but related functions they 

perform, determination, and control.  The determination function is commonly comprised 

of sensors for understanding the space environment and an algorithm for applying the 

collected data to deliver an attitude estimate.  The control function ingests the attitude 

estimate as the known as well as a desired pointing into the control algorithm to calculate 

an attitude adjustment solution.  The required commands and values are then passed to 

the control actuators with and the process repeats in a feedback loop.  The performance 

characteristics of the ADACS while useful as a singular system are much more valuable 

when combined with the required support systems, chassis, and payloads as the emergent 
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behaviors of a total system can vary widely from that of the component systems.  It stems 

from this idea the necessity to test ADACS performance in a flight-like configuration and 

under flight-like conditions originates. 

 

Problem Statement 

The Air Force Institute of Technology’s (AFIT) Center for Space Research and 

Assurance (CSRA) operates a CubeSat program intent on providing research 

opportunities to the student and faculty population as well as expanding the 

knowledgebase of the DoD with regards to small satellite development, operations, and 

performance.  Essential to the program is the ability to make design decisions based off 

the expected performance of critical satellite components and their inherent operations in 

variable configurations, procedures, and environments.  Derived from current Mission 

Statements are required performance points of which a selected ADACS must meet to 

provide full capability.   The belief that ADACS performance must be tested in flight-like 

conditions is at the basis for accepting the test results.  The central requirements that aid 

in the characterization of the ADACS ability to perform operationally in a flight-like 

simulation are. 

1. Detumble:  The ADACS must be able to reduce the rate of rotation in all three 

primary axes after an induced external perturbation simulating ejection from the 

dispenser.   

2. Pointing Accuracy:  The ADACS must be able to accurately calculate, transmit, 

and hold the pointing of the chassis. 
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Beyond the requirements derived from the Mission Statements are generalities required 

to support the test procedures. 

1. The ADACS must be able to accept commands from an external wireless source 

to simulate a ground-to-space data link. 

2. The ADACS must be able to deliver telemetry data to aid in test analysis. 

3. The ADACS must be able to perform within a magnetic environment estimated to 

be representative of the magnetic field on orbit. 

 

Research Focus 

The ultimate goal of this research is two-fold.  First the development a test plan capable 

of assessing the performance metrics of any CubeSat-specific ADACS unit as mounted to 

a standardized chassis and subjected to a flight-like test environment was required.   

Secondarily, testing of an available ADACS unit to inform both the validity of the test 

plan itself, as well as informing on the performance of the ADACS unit.  Two self-

contained ADACS units are examined to inform the test plan, the Adcole Maryland 

Aerospace, Inc MAI-401, and the Blue Canyon Technologies XACT-15.   The MAI-401 

was ultimately used as the test case for the initial assessment and subjected estimated 

magnetic fields ranging from 450 to 600 KM orbital altitude at 50 degrees inclination.  

The estimated magnetic fields were generated using Analytical Graphics Inc’s Systems 

Tool Kit (STK) product as applied through AFIT’s in-house Helmholtz Cage.  The results 

of the test plan as well as the test itself shall provide not only data on the specific 

ADACS, but a comparative basis for characterizing all future ADACS options as they 
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relate to performance and ability to complete Mission specific maneuvers. operations, 

taskings, and in aiding on-orbit decision making processes. 

 
Methodology 

To fully test and characterize ADACS performance in a flight-like scenario a number or 

apparatus are required to simulate the space environment on Earth.  The magnetic field 

emanating from the Earth grows weaker as the distance from the center of the Earth 

increases, such that the magnetic field in space is much less than that on Earth.  

Employing a 3-axis Helmholtz Cage allows for control of the measured magnetic field 

within a limited space within the Helmholtz Coil structure enabling the tuning of the 

magnetic field to that of a specified orbit.   

 

Similar to the magnetic field, the gravitational force as produced by Earth also grows 

weaker as the distance from the center of the Earth increases.  An assumption made is 

that though the ability to negate the gravitational force is absent, manipulation of the 

effects of gravity acting on an object such as friction can be significantly decreased.  By 

mounting the test chassis onto an air bearing the force of gravity as applied through 

friction can be determined as negligible allowing for the realization of a largely 

unaffected rotational spacecraft.   

 

Simulation of the Sun as required for data collection by the onboard Sun sensors is 

delivered by an incandescent bulb mounted within the Helmholtz Cage.  The assumed 

energy from the Sun across all spectrums in space is approximately 1350 W/m2.  The test 
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setup included a 200 W incandescent lamp set at 0.2 m from the test platform providing 

enough light energy to indicate a solar track from the Sun sensors.   

 

The test cases are then run at the varying pre-determined orbital parameters with data 

captures collected from cage mounted magnetometers, telemetry from the ADACS unit, 

and chassis motion as viewed from the PhaseSpace Motion Capture system.  The test data 

can then be analyzed for performance of the cage, test setup, ADACS, and saved as a 

comparative for future ADACS units.  

 

Preview 

Chapter I delivers the background required to understand the importance of CubeSats and 

their components to AFIT and the CSRA,  leading to the realization of the required 

testing of commercially available CubeSat components and the methodology on how to 

accomplish the testing.  Chapter II explores the intricacies of CubeSats, ADACS and 

their constitutive components, algorithms, and operations, as well as a dive into the space 

environment and how to provide a relative space environment on Earth.  Chapter III 

outlines the methodology used in developing the test plan to create the framework of 

details, procedures, and standards required to repeatably test and characterize multiple 

ADACS offerings.  Chapter IV discusses the test data, performance of the test plan itself, 

and results characterizing the ADACS performance, along with qualifications and 

recommendations for the test plan and setup moving forward.  Finally, Chapter V 

describes the overall conclusion of the research with a view towards future work and the 

benefits of continuing this research. 
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II.  Background 

 
Chapter I introduced the growth in popularity as well as the increasing role that CubeSats 

are taking in space exploration, research, and operations.  Additionally, the evolving 

demands imposed upon Attitude Determination and Control Systems (ADACS) of 

CubeSat platforms are discussed, describing the need for expanded investigation into the 

performance of ADACS across varied mission sets.  This research with the Air Force 

Institute of Technology (AFIT) and more specifically AFIT’s Center for Space Research 

and Assurance (CSRA) centers on the creation of a plan to comparatively test and 

characterize ADACS Commercial-Off-The-Shelf (COTS) capabilities for the benefit of 

future mission component selection and solutions. The following chapter, Chapter II, 

begins by providing highlights of CubeSat definitions,  developments, properties, and 

interactions  in Section 2.1.  Section 2.2 explores the Missions and complexities of 

CubeSats and their increasing relevance in space.  ADACS specific hardware, software, 

and determination algorithms as well as the history of their advancement are found in 

Section 2.3,  and the space environment and test apparatus required to test and 

characterize ADACS  are available in Section 2.4.  The four sections referenced in 

Chapter II include the pertinent background information and contextual explanations of 

what is required to form a broad and inclusive understanding of the complexities inherent 

in test and characterization of Attitude Determination and Control Systems.   

 

2.1  CubeSats 

Developed jointly between Jordi Puig-Suari of California Polytechnic State University 

and Bob Twiggs of Stanford University to satisfy the requirements for usage in the Poly-
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Picosatellite Orbital Deployer (P-POD), the CubeSat standard was born [4].  CubeSat’s 

are considered small satellites in generality, but are commonly delineated, as shown in 

Table 1 [5] by mass. 

 

Table 1 - First satellite classification [Sweeting, 1991] from [4] 

 

 

Mass, as a simplified measurement for classification provides a reference to magnitude of 

the spacecraft being developed, while CubeSat structure is the objective of the 

standardization.  A single 10cm x 10cm x 10cm cube weighing approximately 1 to 1.5 kg 

is one standard unit, or “U” of a CubeSat.  By combining “U’s” to generate larger chassis 

shapes, a program can effectively build out standardized configurations. Figure 1 shows 

the most popular configurations currently in use today , the 1U, 3U, and 6U form factors, 

which have gained popularity due to several standardized and commercially available 

CubeSat deployment systems.  The P-POD mentioned above, and Planetary Systems 

Corporation’s Canisterized Satellite Deployer are such systems.  With the risk of 

developing the method and mechanism of dispensing being transferred to another entity 

with flight heritage, the spacecraft development team can focus on the satellite 

development specifically, though confined by the bounds of the standardized dispenser 

configuration. 
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Figure 1 – Standard 1U, 3U, and 6U CubeSat Configurations 

 
 
With the standardization of the CubeSat structure initially set in 1999 and the release of 

the CubeSat Design Specification currently on revision 13 [6],  multiple commercial 

entities began developing standardized components specifically intended for use within 

CubeSats.  By adhering to the standardization, a reduction in development effort and re-

work inefficiencies could be obtained, which when measured in cost savings can be 

passed on to the satellite developers.   Decreased costs lower the barrier for entry into 

Space, providing access to a greater pool of organizations to begin developing Space 

missions with CubeSats as the base platform.  The first CubeSat launched in 2003, the 

100th by 2012 [4], and as of April 2020 an estimated 1210 CubeSats have been launched 

in total [7].   

 

Prior CubeSat development efforts, as well as those currently in development, span a 

wide range of owner organizations with a wide array of objectives.   Commercial 

companies such as Planet Labs have developed large constellations leveraging CubeSats 

such as their PlanetScope constellation [8] for subscription-based services benefitting 

from public and governmental contracts.  Defense organizations such as the United States 

Air Force’s Air Force Research Laboratory develops CubeSats such as the Very Low 

“1U” “3U” “6U” 
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Frequency Propagation Mapper (VPM) [9] for direct Space research enabling increased 

warfighter support.  The National Aeronautics and Space Administration (NASA) 

leverages programs such as Educational Launch of Nanosatellites (ELaNa) [10] to 

partner with educational institutions both at the high school and collegiate level to expose 

and recruit students into Science, Technology, Engineering, and Math (STEM) futures, 

by providing research topics and funding.  CubeSats have become an established portion 

of the Space portfolio, with a likelihood of increased proliferation. 

 

Though small in physical size, the miniaturization of standardized components has 

enabled CubeSats to retain many of the same capabilities as larger satellites, while the 

growth in Commercially available Off the Shelf (COTS) components enabled by the 

standardization of the CubeSat platform has continued to reduce acquisition costs.  From 

this, the increase in usage of CubeSats as well as an expansion of CubeSat mission sets 

continues to grow and evolve. 

  
 
 
2.2  Mission Sets and History 

As space travel, exploration, and technologies become more accessible to the public at-

large, the expansion of the possibilities of what can be achieved both in Space as well as 

from Space will continue to grow.  Space-based Worldwide internet can bring 

connectivity to populations across the globe and to areas where the cost of a terrestrial 

based system is prohibitive.  Space-based communications will allow for seamless 

scheduling from ships to harbors without the need for repeaters in the loop providing for 

a streamlining of logistics process.  Space-based infra-red (IR) cameras can pinpoint 
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wildfire hotspots in rugged and mountainous terrain saving time and increasing the safety 

of wildland firefighters.  In each of these cases as well as any number of additional cases, 

the need for a robust Space platform is increasing along with the potential for new and 

novel missions.  As mission requirements continue to grow more complex and 

demanding, new space platform architectures with accompanying advancements in 

subsystem components are the logical solution.  However, with the advent of CubeSat 

standards, these complex and demanding missions may be realized through existing 

CubeSat architectures.  This paper expands upon the knowledge of the current set of 

offerings available from Commercial-Off-The-Shelf (COTS) Attitude Determination and 

Control Systems (ADACS) for CubeSat Proximity Operations, and how they can provide 

an expansion of Rendezvous and Proximity Operations mission capabilities.   

 

To understand past and future missions, it is imperative to have a foundational set of 

definitions to  describe mission aspects.  Reeseman and Rogers of The Aerospace 

Corporation define the major mission operations applicable to this research succinctly in 

their 2018 article, Table 2 [11].   

 
Table 2 – Space Mission Definitions [11] 

 
Mission Definition 
Rendezvous (R) Matching the plane, altitude, and phasing of two (or more) 

satellites. 
Proximity Operations 
(PO) 

Two (or more) satellites in roughly the same orbit intentionally 
perform maneuvers to affect their relative states. 

Docking [A] subset of proximity operations, where one satellite 
intentionally performs maneuvers to physically contact another 
satellite. 

Cooperative RPO Information (position, velocity, health/status, etc.) transfer is two-
way via crosslinks, ground contact, etc. Example: docking with the 
ISS. 
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Non-cooperative RPO Information transfer between vehicles is one-way only. 
 
 
From the beginnings of Space travel, the thought of a spacecraft rendezvous with a target 

was on the minds of the developers.  Beginning in World War II Germany, the German 

V2 Ballistic Missile, the first craft ever to enter orbit did so in 1944 with the sole purpose 

to rendezvous with a specified target on Earth.  Once space flight was proven achievable 

by humanity, the doors were blasted wide open, fueled by the Cold War and the Arms 

Race, a transition to Space became a popular territory for proving National dominance, 

culminating with the Space Race between Soviet Russia and the United States of 

America.   In 1961 Yuri Gagarin became the first human safely visit and return from 

Space on the Russian Vostok 1 Mission.   In 1962, John F. Kennedy proclaimed to the 

world that the United States was going to take on the ultimate rendezvous mission of the 

time, to have a manned spacecraft not only rendezvous with; but also land on the Moon.  

This feat of engineering would come to fruition on July 20, 1969 when the Apollo 11 

mission crewed by Neil Armstrong and Buzz Aldrin achieved their goal.   

 

Along the way to the Moon landing there were multiple steps proving increased 

capability from both key players.  The US’s manned Gemini 6 successfully rendezvoused 

with Gemini 7 as the first spacecraft-to-spacecraft rendezvous in 1965.  While in 1966 

Neil Armstrong operating Gemini 8 successfully rendezvoused and docked with an 

Agena rocket body proving manned docking capabilities.   

As these manned rendezvous and docking missions became more prevalent, so too did 

the idea of unmanned or autonomous rendezvous and docking.  Up until this point, all 
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rendezvous missions required a human in the loop.  In 1967, the Soviets became the first 

Nation to achieve autonomous rendezvous and docking of two Cosmos Spacecraft. 

 

 
Figure 2 – The Gemini VIII spacecraft approaches the Agena during rendezvous 

maneuvers. 
Credits: NASA/David Scott [12] 

 
The current trend in spacecraft development is to harness the savings of moving to 

smaller satellites capable of performing the same (or more advanced) missions that were 

previously accomplished through large-scale and more expensive spacecraft 

architectures.  Many of the mission aspects will stay the same, but with the ability to 

procure multiple small satellites for the same cost to orbit as one single large satellite, 

there comes new potential of how to leverage an interaction between satellites.  Planet 

implemented a specific example of a Cooperative Rendezvous and Proximity Operations 

mission (RPO).  It is a constellation of 150+ satellites on multiple differing platforms, 

including CubeSats, to capture images of the Earth, communicate data including 

positioning, and cross-link data to larger more capable satellites in the constellation for 

downlinking [8].  To perform these data linking tasks the componentry of the spacecraft 
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incoming data time-synced from onboard sensors, derives the next best estimate or 

“propagated estimate” of spacecraft attitude at a specified time step [18].  Kalman 

Filtering has been shown to be non-discretionary as to types of sensors providing data, 

specifically mentioning sun sensors, magnetometers, star sensors, and gyroscopes, while 

computing attitude accuracies as fine as the sensors themselves are capable of [19].   

 
 

Table 3 – Attitude Determination Algorithm Quick Comparison 
 

Algorithm Vector/Quaternion # Input 
Values 

Methodology 

Algebraic/TRIAD Vector 2 Deterministic 
QUEST Quaternion > 2 Optimization 

Kalman Filtering Quaternion > 2 Stochastic 
 

With the large pool of options in attitude sensors, attitude determination algorithms, and 

the combination of the two, it behooves the developers of ADACS to provide multiple 

options to the consumer as the performance requirement can vary greatly by mission.  

Most commonly available COTS ADACS intended for use in CubeSat applications such 

as the solutions offered by Adcole Maryland Aerospace (MAI) [20] and Blue Canyon 

Technologies (BCT) [21] provide commanding to choose both sensor inputs modes as 

well as determination algorithm modes allowing for configuration control based on 

mission specifications.  Ultimately, by leaving the choice to the consumer, the 

operational performance can be tuned to suit the accuracy required for the sensors 

chosen. 

 
2.3.3  Determination Sensors 
 
The accuracy of a spacecraft’s attitude solution is a by-product of both the fidelity of the 

determination algorithm and the accuracy of the sensors that provide measurement data.  
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By altering the current through the system of coils the strength of the field between the 

coils will change.  By reversing the flow of current the directionality of the field will 

change.  A single pair of Helmholtz coils when placed one radius apart will create a 

measurable zone of uniformity between the coils in the direction of the generated 

magnetic field vector.  Combing three pairs of magnetic coils in three axes oriented 

around a central point will create a box of uniform magnetic field known as a Helmholtz 

Cage.  From this magnetic box, each axis field can be precisely controlled to simulate the 

space environment at the specified orbital location and time.   

 

 
Figure 12 – Square Coil Helmholtz Cage Composite of X, Y, Z Coil Pairs 

 
 
The Helmholtz Cage at AFIT as developed by Brewer in her 2012 Thesis substiuted ring 

coils  for square coils, and as such the coil spacing and the formula for the uniform 

magnetic field between the square coils is altered.  The alteration requires that the square 
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coils be spaced 0.5445 times the coil height apart as opposed to the rings’ one radius 

spacing, and in the altered equation an additional variable of 𝛾𝛾 is required.  𝛾𝛾 is the ratio 

of the height of the coil over the separation distance.  This square coil design has been 

used to develop Helmholtz cages at both Carthage College, Kenosh WI [2] and 

Massachusetts Institute of Technology, Cambridge MA [25], though MIT chose to use 

the Merritt 4-Coil Design to provide a more uniform magnetic field. 
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 (5) 

 
 
2.4.3  Air Bearings 
 
For a space system to be properly characterized on Earth it must be tested in a relative 

environment to Space, specifically the environment on Earth needs to mimic the 

microgravity and minimally torqued nature of Space.  With the Helmholtz cage mostly 

negating any induced magnetic torques, the remaining torques are largely friction 

induced.  A reduction of friction surfaces within the experimental setup will play a large 

role in the fidelity of the test results as well as the ability to take precision measurements.  

Methods to reduce the friction supplanted into the tests include magnetic levitation 

systems, gravity offload systems, and air bearings [26].  Air Bearings create a very low 

friction environment between two surfaces and can be developed in several shapes and 

orientations allowing for large degrees of movement in both the planar and rotational 

aspects.  The downside to an air bearing is that it must be attached at some point to a test 

apparatus and as such the bearing will be encumbered along some plane of motion.  
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Generally, an air bearing will allow for full rotational freedom along one plane of 

rotation, while the two remaining planes of rotation will be hindered the apparatus itself. 

 

 
Figure 13 - Air Bearing general operation.  

 
Air bearings, such as the apparatus at AFIT are commonly a cup and ball style.  

Compressed air is fed through the cup portion, while a finely machined ball or half sphere 

sits into the cup.  The air being forced through the cup creates an air cushion so that the 

ball is essentially floating.  The test article, or spacecraft in this case is attached to the 

ball and balanced as precisely as possible.  If the machining of the cup, air nozzles, and 

ball are precise enough the system will be in equilibrium.  If the machining is not perfect 

there will be additional torques produced that will affect the performance of the system 

and introduce bias into the measurements.  Though not a perfect representation of the 

space environment, the performance aspects of the air bearing system does provide a 

solid understanding and test scenario for ADACS performance. 
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Figure 14 - AFIT Air Bearing 
 

III.  Methodology 
 
The benefits of characterizing and understanding the currently available COTS ADACS 

offerings provide clarity to the component selection process and aid in streamlining the 

required design effort for current and future CubeSat missions.  Armed with a broad and 

inclusive understanding of the fundamental components and functionality of ADACS 

systems achieved through the literature review in Chapter II, the methodology of the 

characterization process can be developed.  Chapter III outlines the effort to produce a 

standardized characterization method to which ADACS offerings may be subjected, 

through a deliberate set of test procedures.  The focus on standardization provides a fair 

evaluation procedure allowing the capability of each platform to be quantified against 

other units.  Additionally, specific mission requirements can be tested to classify 

suitability of each offering to specific mission sets. 


